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Overview

This deck of slides goes through the basics of asymptotic theory.

The corresponding chapter in Hansen is 6.
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Convergence in probability

Consider a sequence of random vectors Z1, Z2, . . . , Zn.

Zn converges in probability to Z as n → ∞ if for all constants δ > 0

lim
n→∞

P(∥Zn − Z∥ ≤ δ) = 1.

The random variable Z is called the probability limit of Zn.

We write Zn →
p

Z or plimn→∞Zn = Z.
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Examples

Consider binary Zn with P(Zn = 0) = 1 − pn and P(Zn = 1) = pn.

Suppose that pn → 0 as n → ∞:

For any δ ≥ 1, P(|Zn| ≤ δ) = 1,

For any 0 < δ < 1, P(|Zn| ≤ δ) = P(Zn = 0) = 1 − pn → 1,

and so Zn →
p

0.

Consider binary Zn with P(Zn = 0) = 1 − p and P(Zn = an) = p.

Suppose that an → 0 as n → ∞:

As an → 0, for any δ > 0 there exists a value for n at which an ≤ δ.
Hence, Zn →

p
0.
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Let Z be a random variable independent of n and let

Yn =
{

1 with probability 1/n

0 with probability 1 − 1/n
.

Define Zn = Z + n Yn.

To show that Zn →
p

Z note that Zn − z = n Yn. Hence, for sufficiently
small δ

P(|Zn − Z| > δ) = P(n Yn > δ) = P(Yn = 1) = 1/n,

which goes to zero as n → ∞.
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Suppose that
Zn ∼ N(0, σ2

/a2
n).

for some an → ∞ as n → ∞.

Then
P(|Zn − 0| > δ) = P(Zn ≤ −δ) + P(Zn > δ)

with
P(Zn ≤ −δ) = Φ (−an

δ/σ) ,

and, by symmetry of the normal distribution,

P(Zn > δ) = P(Zn ≤ −δ) = Φ (−an
δ/σ) .

Thus,
P(|Zn − 0| > δ) = 2 Φ (−an

δ/σ) →
n↑∞

0
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Now suppose that
Zn ∼ N(0, σ2

n),

and let an be some other deterministic sequence that grows with n.

Then

P(an|Zn − 0| > δ) = 2 Φ (−δ/anσn) .

This goes to zero provided that

anσn → 0.

When anσn converges to a finite constant c > 0 we have that

P(an|Zn − 0| > δ) = 2 Φ(−δ/c)

as then anZn ∼ N(0, c2).
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Orders of magnitude

We say that
Zn = op(an)

when a−1
n Zn →

p
0

We say that
Zn = Op(an)

if and only if for every ε there exists a finite number Mε and an n∗
ε

such that
P(a−1

n ∥Zn∥ > Mε) ≤ ε

for all n ≥ n∗
ε.

Then a−1
n Zn = Op(1), that is, the sequence a−1

n Zn is stochastically
bounded.
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Continuous mapping theorem

Let Zn →
p

c for some constant c.

Let g be a function that is continuous at c.

Then g(Zn) →
p

g(c).
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Sample-mean theorem

Let Y1, Y2, . . . , Yn be a random sample on Y . Suppose that Y has finite
mean µ and variance σ2.

Then the sample mean

Ȳ = 1
n

n∑
i=1

Yi

satisfies
E(Ȳ ) = µ, var(Ȳ ) = σ2

n
.
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Law of large numbers

Let Y1, Y2, . . . , Yn be a random sample on Y . Suppose that Y has finite
mean µ.

Then
Ȳ →

p
µ.

An implication is that, for any function h(Y ) with finite mean, we have
that

1
n

n∑
i=1

h(Yi) →
p
E(h(Y )).
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Under the additional condition that var(Y ) = σ2 < ∞ (for the scalar
case) we have

P(|Ȳ − µ| > δ) ≤ E[(Ȳ − µ)2]
δ2 = var(Ȳ )

δ2 = 1
n

σ2

δ2

which converges to zero as n → ∞.

Here,

the first step follows from Markov’s (Chebychev’s) inequality, and

the second step follows from the sample-mean theorem.
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The below plots give deciles of the distribution of Y as a function of n.
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Note that √
n (Ȳ − µ) = Op(1)

or, equivalently,
Ȳ − µ = Op(n−1/2).

Indeed,

P(
√

n|Ȳ − µ| > δ) ≤ E[n (Ȳ − µ)2]
δ2 = n var(Ȳ )

δ2 = σ2

δ2 .

Consequently,
na(Ȳ − µ) →

p
0

for any a < 1/2, that is, na(Ȳ − µ) = op(1) for any such a.

On the other hand, for any a > 1/2,

na(Ȳ − µ) = na−1/2n
1/2(Ȳ − µ) = na−1/2Op(1) = Op(na−1/2)

diverges as n → ∞.
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Convergence in distribution

Let Zn ∼ Fn and Z ∼ F .

Zn converges in distribution to Z as n → ∞ if

Fn(z) → F (z)

holds at all continuity points z of F as n → ∞. F is called the limit
distribution of Zn.

We write Zn →
d

Z.
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Examples

Let Zz have mixture distribution

Fn(z) = Φ(z) pn + Φ(z − 1) (1 − pn).

If pn → 1 as n → ∞ then

Fn(z) → Φ(z)

for all z and so Zn →
d

Z for Z ∼ N(0, 1).

If pn → 0 as n → ∞ then

Fn(z) → Φ(z − 1)

for all z and so Zn →
d

Z for Z ∼ N(1, 1).

If pn → p ∈ (0, 1) then Fn(z) → Φ(z) p + Φ(z − 1) (1 − p).
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Continuous mapping theorem

Let Zn →
d

Z.

Let g be a function that is continuous in Z (with probability one).

Then g(Zn) →
d

g(Z).
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Central limit theorem

Let Y1, . . . , Yn be a random sample on Y .

If E(∥Y ∥2) < ∞ with

µ = E(Y ), V = var(Y ),

then √
n(Ȳ − µ) →

d
N(0, V )

as n → ∞.

Alternatively, if V is non-singular, then
√

n V −1/2(Ȳ − µ) →
d

N(0, I)

as n → ∞.
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The central limit theorem broadly means that, in large samples, sample
averages are ‘close to’ being normally distributed.

Moreover,
Ȳ = µ + 1√

n
V

1/2Z + op(n−1/2)

for Z ∼ N(0, I).

That is,
Ȳ ∼

a
N(µ, V/n),

where ∼
a

can be interpreted as ‘approximately distributed as’.
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The plots below concern the standardized sample mean of samples of
Bernoulli random variables.

Observe how the histogram approaches the standard-normal density as
n grows.
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Delta method

Let c = (c1, . . . , ck)′ ∈ Rk.

Let
√

n(Zn − c) →
d

N(0, V ) as n → ∞.

Let g = (g1, . . . , gq)′ : Rk → Rq be continuously differentiable in a
neighbourhood of c.

The k × q Jacobian is

(G(u))i,j = ∂gj(u)
∂ui

.

We write G = G(c).

Then √
n(g(Zn) − g(c)) →

d
N(0, G′V G)

as n → ∞.
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Examples

Take √
n(Ȳ − µ) →

d
N(0, σ2).

For g(u) = exp(u), G(u) = exp(u), and so
√

n(exp(Ȳ ) − exp(µ)) →
d

N(0, exp(µ)2σ2).

For g(u) = u3, G(u) = 3u2, and so
√

n(Ȳ 3 − µ3) →
d

N(0, 9µ4σ2).
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Take

√
n

(
X̄ − µX

Ȳ − µY

)
→
d

N

(
0
0 ,

σ2
X ρσXσY

ρσXσY σ2
Y

)
.

Suppose that µY ̸= 0.

Then for
g(µX , µY ) = µX

µY

we have
G =

(
1/µY

−µX/µ2
Y

)
and so √

n
(

X̄/Ȳ − µX/µY

)
is asymptotically normal with variance

(
1/µY −µX/µ2

Y

) (
σ2

X ρσXσY

ρσXσY σ2
Y

) (
1/µY

−µX/µ2
Y

)
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Slutzky’s theorem

Suppose that
Xn →

p
c, Yn →

d
Y,

as n → ∞.

Then

Xn + Yn →
d

c + Y ,

Xn Yn →
d

c Y .
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Example

Suppose that scalar random variable Y has finite mean µ and variance
σ2.

Then
Ȳ − µ
σ/

√
n

→
d

N(0, 1)

by the central limit theorem.

Also,

s =

√√√√ 1
n − 1

n∑
i=1

(Yi − Ȳ )2 →
p

σ

To see this note first that

1
n

n∑
i=1

(Yi − Ȳ )2 = 1
n

n∑
i=1

(Yi − µ)2 − (Ȳ − µ)2.
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Here,
1
n

n∑
i=1

(Yi − µ)2 →
p

σ2

by the law of large numbers, and (Ȳ − µ)2 →
p

0 because Ȳ →
p

µ.

Hence,

s2 = n

n − 1
1
n

n∑
i=1

(Yi − Ȳ )2 →
p

σ2

and, by the continuous mapping theorem, s →
p

σ.

Therefore,

√
n

Ȳ − µ

s
= σ

s

Ȳ − µ
σ/

√
n

= (1 + op(1)) Ȳ − µ
σ/

√
n

→
d

N(0, 1)

by Slutzky’s theorem.
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